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     Abstract 

We developed an end-to-end automatic algorithm for the 

detection of signs of COVID-19 virus infection in ECGs. 

We analyzed 12-lead ECGs from patients infected by 

COVID-19 (C-group) and from a control group (NC-

group). The C-group (896 cases) included patients (age 

range [19-96] years) hospitalized at Ospedale San Matteo 

in Pavia (Italy) during the first 2020 pandemic outbreak. 

Infection was confirmed by nasal swab testing. The NC-

group (also 896 cases) was built by collecting ECG in 

sinus rhythm from 3 datasets: Georgia ECG (USA), PTB-

XL (Germany) and CPSC 2018 (China). Control ECGs 

were matched by gender, age and heart rate. An additional 

control group, only used for testing, was extracted from the 

Ningbo (China) database. A 4-layers convolutional neural 

network (CNN), with increasing filter size plus a final fully 

connected (FC) layer, was designed to classify C vs NC-

group. The CNN was trained and k-fold cross validated 

(k=7) on 1536 ECGs (1316 for testing-220 for validation). 

Every fold model was used to classify the remaining, 

separate common test set of 256 ECGs. The accuracy was 

0.86 ± 0.01 on validation, 0.86 ± 0.01 on the test set. The 

FPR on the NC-group was 0.14± 0.03 on validation, 0.13± 

0.02 on test and 0.10± 0.01 on the Ningbo test set (p>0.05, 

ns) showing that no bias was induced by the selection of 

datasets. 

 

1. Introduction 

Coronavirus Disease 2019 (COVID-19) is a disease 

produced by Severe Acute Respiratory Syndrome 

Coronavirus-2 (SARS-CoV-2) infection causing the 

current pandemic around the world. Due to the rapid 

propagation and the massive increase in the number of new 

infections of such a disease, a reliable and rapid 

identification of COVID-19 has become crucial to prevent 

its rapid spread. The quick antigenic swabs satisfy this 

requirement, nevertheless a patient needs to have the 

suspicion of being infected in order to proceed to testing, 

which is not possible for asymptomatic cases. 

Previous studies have shown insight into the occurrence 

and implications surrounding electrocardiographic 

changes in the infected individuals and diverse patterns 

were observed in the electrocardiogram (ECG) of patients 

with COVID-19. In particular, various forms of 

cardiovascular variations such as prolongation in QT [1], 

arrhythmias [2], ST-segment modifications [3] and PR 

interval changes [4] have been observed in the ECG of 

COVID-19 cases. Such cardiovascular modifications and 

patterns [5] have promoted the study of ECG data as a new 

means of diagnosing the novel coronavirus. 

Deep neural networks (DNNs) had a remarkable impact 

on different scientific fields [6] and showed huge potential 

in the medical domain creating automated diagnostic tools 

capable of analyzing medical data. Regarding COVID-19-

induced pneumonia, several works reported that detection 

might be possible using DNNs on chest X-rays and CT 

scans [7-9]. Unrelated to COVID pneumonia, cardiac 

anomaly classification from ECG data through DNNs 

techniques has been developed in other studies 

demonstrating the effectiveness of an end-to-end approach 

both for single [10] and 12-lead signals [11]. On top of that, 

the PhysioNet/Computing in Cardiology Challenge in 

2020 and 2021 [12], whose aim was classifying multi-type 

arrhythmia and cardiac abnormalities over annotated 

databases with thousands of 12-lead ECG recordings, has 

further stimulated the development of end-to-end ECG 

analysis tools. As an outcome, different models with 

increasing complexity and different approaches have been 

developed [13]. 

The promising performances achieved in this field 

suggest a potential application of DNNs for COVID 

diagnosis directly from the ECG traces. Therefore, in this 

work we have developed an automatic algorithm for the 

detection of signs of COVID-19 virus infection in 12-lead 

ECGs. 
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2. Materials and Methods 

2.1. Data 

We analyzed a case group (C: COVID) and a control 

(NC: non-COVID) group. The C-group included 12-lead 

ECG recordings from patients (age 66.93 ± 15.83, range 

[19-96] years) hospitalized at Ospedale San Matteo in 

Pavia (Italy) during the first 2020 pandemic outbreak. All 

the recordings had the same sampling rate (500 Hz) and 

Duration (10 seconds). All signals were stored with the 

standard set of 12 leads (the order was I, II, III, AVL, AVR, 

AVF, V1-V6). In all patients, infection was confirmed by 

nasal swab testing. 

To address a possible bias of the network introduced by 

different data collection practices, the NC-group was built 

by selecting ECG in sinus rhythm from three public 

datasets collected in different countries and previously 

used in the Physionet Challenge 2021: Georgia ECG 

(USA), PTB-XL (Germany) and CPSC 2018 (China).      

Control ECGs were selected among those matching the C-

group by gender, age (±3 year) and heart rate (±3 number 

of beats in the 10s segments). For each ECG in the C-group 

the order in which the three datasets were searched for a 

matching record in sinus rhythm was randomly changed to 

further avoid bias. Globally, the dataset consisted of 1792 

signals balanced in respect of the two classes: 896 (C 

group) plus 896 (NC group). An additional NC-group of 

790 recordings was extracted from the Ningbo (China) 

database, using the same criteria as before. Since this 

database did not match all the specific cases in the C-

group, it was not possible to have the same number of 

recordings. In particular, there were no patients over 90 

years of age in the Ningbo database. This final dataset was 

used to check model generalization capability on unseen 

data. A summary of the group characteristics is shown in 

Table 1. 

 

Table 1. Features of the three different datasets. Age is 

expressed in years and Heart Rate in bpm.  

Feature  C-group NC-group Ningbo 

Age 

(mean±std)  

66.9±15.8 66.1±15.3 64.4± 5.00 

Age (min-

max) 

19 – 96 18 – 94 18 – 89 

Gender 

(male) 

566 566 513 

Gender 

(female) 

330 330 277 

Heart Rate 

(mean±std) 

76.68±15.2 74.16±12.6 75.66±11.0 

 

 

2.2. Pre-Processing  

A preprocessing step was applied in order to minimize 

the difference between the data from different sources. It 

consisted of a filtering step (3rd order Butterworth filter 

[0.5-45 Hz]) followed by Z-score normalization applied to 

each lead, separately. 

 

2.3. Network architecture 

The deep learning model was designed to expect in 

input a 10 s 12-lead ECG sampled at 500 Hz (assembled in 

a data matrix of 12x5000 samples). The architecture used 

in this work for classifying C vs NC group is a 

convolutional neural network (CNN 1D). This network 

aims at learning a compressed representation (encoding) of 

an input dataset with an approach similar to the biological 

sensorial processing of the visual cortex whose cells are 

sensitive to small sub regions of the visual field called 

receptive fields. In particular, the designed model consists 

of a network with 4 convolutional layers (see Figure 1) plus 

a fully connected (FC) layer for feature selection and then 

a final FC layer for classification with a softmax activation 

function. The filter size of the convolutional layers 

increases from 64 in the first two convolution layers, to 128 

in the third and then up-to 512 in the last layer to capture 

as much information as possible in the different CNN filter 

banks. The model has a kernel size of 12 in the first 

convolutional layer and a kernel size equal to 7 in the last 

one. A previous work has shown that large kernels are 

more helpful for networks to learn meaningful features 

[14]. The ReLu activation function was used. 

In our design of the network, we planned to have it as 

simple as possible. The choice of such a shallow network 

is motivated by the small number of available training 

samples and to have short training time. In order to avoid 

overfitting, a Global Max Pooling layer is inserted between 

the last convolutional layer and the first FC layer. This 

helped to improve (data not shown) model performance 

and to reduce the amount of model parameters. 

Furthermore, dropout layers were inserted before and after 

the first FC layer which are prone to overfit.  

 

  

  
Figure 1. Architecture of the model used in this work. 

(F: Filters, K: Kernel, P: Probability, U: Units, BN: Batch 

Normalization, GMP: Global Max Pooling) 
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2.4. Network tuning and testing 

The 1792 signals were initially split to create a hold-out 

test-set of 256 cases. The remaining recordings were split 

into training and validation. In particular, the model was k-

fold cross validated (k=7) using 1316 ECGs for training 

and 220 for validation. Each signal entered in one set only 

(a single signal was not split into parts) and sets were 

balanced between C- and NC-class. Every fold model was 

then used to classify the common hold-out test set of 256 

ECGs and the performance reported for this set. To check 

generalization capability on unseen data, another test set 

was created selecting 790 NC-signals from the Ningbo 

database.  

The network hyperparameters (kernel and filter size, 

first FC size and dropout probability) were determined 

with a Bayesian Optimization tuning that aimed to 

maximize the accuracy on the validation set. Bayesian 

Optimization was used because it does not sample 

hyperparameter combinations randomly but follows a 

probabilistic approach taking into account already tested 

combinations and uses this information to sample the next 

combination for a test. The model was compiled using an 

Adam optimizer and choosing categorical cross entropy as 

loss function. Moreover, a learning rate scheduler was used 

in order to prevent the training curves from diverging: if 

the validation loss was not decreasing in 20 epochs, the 

learning rate was reduced by a 0.1 factor. 

Table 3. Confusion matrix showing the results on the hold 

test set of the model trained at fold #3. 
 

 Predicted 

COVID 

Predicted 

Control 

Actual 

COVID 

 

112 16 

Actual 

Control 

14 114 

 

 

2.4. Metrics 

The performance metrics for diagnosis of COVID-19 

were reported as Accuracy, False Positive Rate (FPR) and 

True Positive Rate (TPR). TPR is calculated as the 

proportion of COVID patients classified correctly, while 

FPR is the proportion of non-COVID patients classified as 

infected. It is worth mentioning that since the dataset is 

balanced, accuracy provided an unbiased measure of the 

network performances. 

 

3. Results 

To show the learning curve of the network, in Fig. 2 the 

trends of accuracy and loss are reported for fold #3. These 

curves have oscillations at the beginning that decrease with 

the progression of the training when the learning rate 

decreases.  

The resulting confusion matrix on the hold test set for 

this fold is represented in Table 3. A significant capability 

to discriminate between C and NC can be observed. 

Overall, the accuracy was 0.85 ± 0.01 (mean ± std on 

the different folds) on validation, 0.86 ± 0.01 on the 

common test set and 0.89 ± 0.01 on the Ningbo test set. 

The performance summary is shown in Table 2. Data are 

reported as mean ± std. 

Table 2. Performance summary on the different evaluated 

sets with the number of cases in brackets. 

Group type Validation Test 

 TPR FPR TPR FPR 

C-group  0.85± 

0.02 

(110) 

- 0.85± 

0.01 

(128) 

- 

NC 

Group 

- 0.14± 

0.03 

(110) 

- 0.13± 

0.02 

(128) 

NC 

Ningbo 

- - - 0.10± 

0.01 

(790) 
Figure 2. Trend of Accuracy and Loss in one fold. 
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For comparison, a t-test was also performed between the 

TPR or the FPR obtained on the validation and the test sets 

to prove no differences exist in the performance. 

Moreover, the FPR computed on the test set of the NC-

group and the NC-Ningbo group was performed to assess 

that no bias was introduced by the arbitrary selection of the 

NC-group. All the tests had p>0.05 (ns). 

 

4. Discussion 

We found that patients infected with COVID-19 present 

electrocardiographic changes that could be identified by 

deep learning models. We chose to develop a network with 

a limited number of layers as it neither demanded 

prolonged training duration nor large number of training 

samples. On our patients, the proposed network showed 

very good discrimination capability.  

To better understand performance, the model was 

evaluated by enriching the control population in the testing 

set with patients from different datasets thus varying the 

sources of data. Since these data were from different 

database sources, it was also a test of the generalization 

capability of the network.  

While the results are promising, the study has some 

limitations. First, it was not possible to test the 

discrimination capability on a different population of 

COVID-19 subjects. Unlike the NC-group, where we 

could use the publicly available Ningbo database, no 

public, digitized 12 lead ECGs from COVID-19 patients 

were available at the time of this study. Secondly, the 

dataset used in the study is from confirmed, symptomatic 

hospitalized COVID-19 patients. Thus, the detection of 

asymptomatic infections in the general population may not 

achieve the same level of sensitivity. Finally, the NC-

group was composed only by subjects in sinus rhythm. 

This might overestimate the TNR in the general 

population, where many other concurrent cardiac 

abnormalities are present. 

In the future, we plan to validate these results 

prospectively, so as to permit the use of ECG as a screening 

test to exclude acute COVID-19 infection. 
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